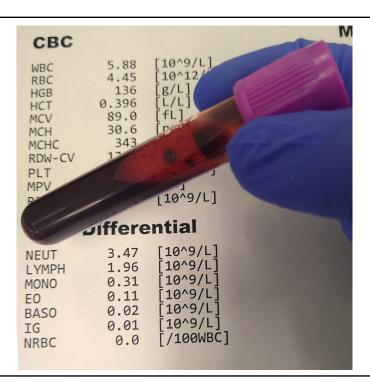
Anemia work-up

Elaina Pirruccello, DO
Pathology Associated of Northern Arizona
Flagstaff Medical Center

1


I have nothing to disclose

Objectives

- Different etiology of anemia.
- Mechanistic classification of anemia.
- What first line tests are appropriate for anemia work-up
- Interpretation of test and additional testing if necessary
- Understand the different causes of anemia and how they may present

3

The CBC

WBC	3.0 x10^9/L	(4.5 - 11.0)
RBC	4.64 x10^12/L	(3.80 - 5.20)
Hgb	126 g/L	(117 - 161)
Hct	0.36 L/L	(0.35 - 0.47)
MCV	76.9 fL	(81.0 - 102.0)
мсн	27.2 pg	(27.0 - 35.0)
MCHC	353 g/L	(310 - 360)
Platelet	255 x10^9/L	(140 - 400)
RDW-CV	16.0 %	(11.5 - 14.8)
MPV	12.00 fL	(9.60 - 12.00)
Retic Cnt Auto %	1.4 %	(0.5 - 2.5)
Retic Cnt Auto #	66.80 x10^9/L	(50.00 - 100.00)
Imm Retic Frac	14 %	
Neutro %	22.30 %	
Lymph %	59.30 %	
Mono %	14.10 %	
Eos %	3.00 %	
Baso %	1.30 %	
Neutro #	0.66 x10^9/L	(2.00 - 9.00)
Lymph #	1.76 x10^9/L	(1.00 - 3.30)
Mono #	0.42 x10^9/L	(0.00 - 1.00)
Eos #	0.09 x10^9/L	(0.00 - 0.70)
Baso #	0.04 x10^9/L	(0.00 - 0.15)

5

What is anemia

- Anemia is defined as:
 - Decrease red blood cells (RBCs) and/or
 - Decreased hemoglobin and/or
 - Decreased hematocrit
- This must be compared with the defined normal ranges for age and gender.
- RBC parameters are usually highest at birth and ranges are higher in males after puberty

Epidemiology

- Incidence: Iron deficiency anemia and hemoglobinopathies (conferring resistance to malaria) are very high (billions of people)
 - · Acquired anemia is more common than constitutional anemia
- Age: Constitutional anemia manifests in the neonatal period or infancy
 - · Acquired anemia can occur anytime throughout life
 - Iron deficiency anemia is common in women of reproductive age and children
 - Predominates in children and women in poor socioeconomic conditions
- Gender: Constitutional anemia has no gender association, except glucose-6-phosphate dehydrogenase deficiency (X-linked autosomal recessive).

7

Constitutional Anemias

- Bone Marrow Failure: cannot produce adequate RBCs
 - · Diamond-Blackfan anemia
- Defective hemoglobin production
 - · Thalassemia and hemoglobinopathies
- Intrinsic erythrocyte survival defects
 - Hereditary spherocytosis and G6PD deficiency
- Hereditary microangiopathic anemias
 - ADAMTS13 deficiency linked to extrinsic defect reducing RBC survival

Acquired anemias

- Production
- Maturation
- Survival defects

9

Mechanistic classification

- 1. Production defects
- 2. Maturation disorders
 - 3. Survival defects

Production defect:

- Failure of the bone marrow to produce adequate erythrocytes
 - · Diverse bone marrow failure disorders
 - Defective erythropoietin production by the kidney
 - Bone marrow effacement by infiltrative or fibrotic processes
 - · Aplastic anemia
 - · Red cell aplasia
 - · Paroxysmal nocturnal hemoglobinuria

11

Maturation disorders affecting erythrocytes

- Nuclear:
 - Impaired DNA synthesis and mitosis
 - · Deficiencies of vitamin B12 or folate
 - Chemotherapeutic agents
- Cytoplasmic:
 - Defective production of hemoglobin
 - Iron deficiency
 - · Globin chain production disorders (thalassemia)
 - · Heme biosynthetic disorders (sideroblastic anemia)

Erythrocyte survival defects

- Intrinsic:
 - Membrane defects (hereditary spherocytosis)
 - Hemoglobin defects (sickle cell)
 - Enzyme deficiencies (G6PD deficiency)
- Turbulent blood flow (mechanical valve)
- Microangiopathies
- Diverse immune mediated hemolytic anemias

13

Work-up

Clinical Approach

- · Age and duration of onset
- Severity of symptoms
 - Sudden vs gradual
 - · Episodic vs sustained
- Clinical history should address menstrual and GI symptoms (specifically looking for blood loss)
- Dietary history (homeopathic remedies and supplements)
- Exposures
 - Occupation
 - Hobbies
 - Medications

15

Clinical Approach

- Family history
- Racial/ ethnic background
- Evaluate underlying chronic disease
 - Liver and kidney disease
 - · Collagen vascular disease
 - · Endocrine abnormalities
 - · Chronic infections

Physical Exam

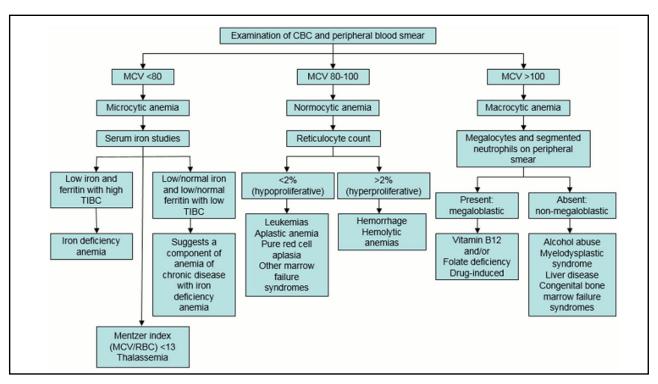
- Stigmata of constitutional disorders
- Jaundice
- Spleen size
- Mucosa
- Nails
- Fingers
- Neurologic features

17

Laboratory Tests

Complete Blood Cell Count (CBC) and differential

- Evaluates the size, shape, hemoglobin content and uniformity of RBCs
- Polychromasia and nucleated RBCs
- RBC inclusions, organisms, agglutination, rouleaux
- · Assess white blood cell (WBC) lineage and platelets


19

Reticulocyte count

- Evaluates whether there is appropriate bone marrow response to anemia
 - Low: Production or maturation disorder
 - Normal: Some cases of anemia of chronic disease
 - Elevated: Hemolytic anemias

Customize further testing based on microcytic, normocytic and macrocytic findings on the CBC

Microcytic, Normocytic and Macrocytic

Microcytic Anemia

- Iron deficiency
- Anemia of chronic disease
- Thalassemia
- Hemoglobin E

23

Normocytic

- Suspect anemia of chronic disease
- Bone marrow may be necessary to exclude other considerations

Macrocytic

- Megaloblastic anemia (rarely, but can be normocytic)
 - · Cobalamin and folate levels
- Reticulocytosis (peripheral smear should show polychromasia)
- Hypothyroidism
- Liver disease
- Ethanol use
- Medications
- Myelodysplasia (assess all cell lineages on PBS)

25

Anemia of Chronic Disease

Anemia seen with acute or chronic inflammatory conditions, infections, end-stage organ failure or malignancy

Etiology

- Cytokine/other immune regulatory factors cause multiple iron metabolic disturbances
- Decreased iron absorption in GI tract
- Accumulation of iron in reticuloendothelial system
- Inability to release stored iron to plasma, hypoferremia
- Diminished iron available to erythroid precursors for hemoglobin synthesis
- Blunted bone marrow response to erythropoietin

27

Clinical and Laboratory Presentation

- · Mild anemia
- Symptoms related to underlying disease usually predominate
- Decreased serum iron
- Normal to increased serum ferritin
- Decreased total iron binding capacity (TIBC)
- Decreased serum transferrin saturation %
- Normal serum transferrin receptor concentration
- Increased plasma/serum and urine hepcidin levels

Pathology

- Injury type
 - Proliferation defect
- Cell type
 - Erythrocyte
- PBS
 - N/N anemia
 - Mild anisocytosis with normal RDW
 - Low reticulocyte count (decreased polychromasia)
- BM
 - Normal number of erythroid progenitors
 - Increased storage in macrophages and histiocytes
 - Decreased sideroblasts (iron containing erythroid progenitors)

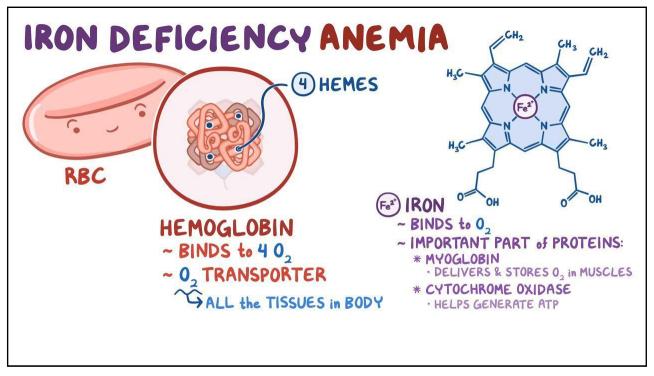
29

Differential

- Iron deficiency
- Anemia of chronic renal failure
 - Anemia secondary to decreased erythropoietin levels
 - BM shows erythroid hypoplasia
- Multifactorial Anemia
 - Patients with renal failure, hepatic failure, AIDS, endocrine disorders ect
 - · Needs clinical correlation

Diagnostic checklist

- Most common type of anemia in hospitalized patients
- Usually mild
- N/N
- Develops 1-2 months after illness onset
- Work-up interpretation:
 - · Decreased serum iron
 - Decreased TIBC
 - Decreased transferrin saturation
 - · Normal to increased serum ferritin
 - Normal soluble serum transferrin receptor levels
 - · Increased plasma/serum and urine hepcidin levels


31

Iron deficiency anemia

Decreased hemoglobin production secondary to decreased iron availability

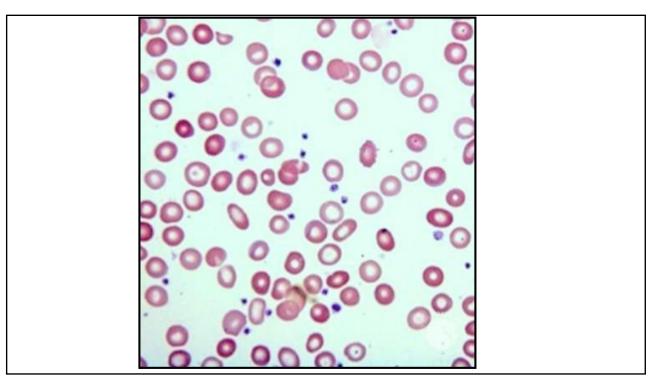
Etiology

- Inadequate hemoglobin production leads to microcytic hypochromic RBCs
- Most common anemia, affects 3 billion people worldwide

Clinical Presentation

- Fatigue
- Pallor
- Weakness
- Tachycardia
- Dyspnea on exertion
- Koilonychia (spoon nail)
- Glossitis
- dysphagia

35


Laboratory Testing

- Microcytic/hypochromic
- Decreased serum iron
- Decreased serum ferritin
- Increased TIBC
- Decreased serum transferrin saturation %
- Increased serum transferrin receptor concentration
- Decreased serum hepcidin

Pathology

- Injury type
 - Decreased hemoglobin synthesis
- Cell type
 - Erythrocyte
- PBS
 - Decreased RBC count
 - Mild to marked anemia with severe anisopoikilocytosis (increased RDW)
 - Microcytic (decreased MCV), hypochromic (decreased MCHC)
- BM
 - Erythroid hyperplasia
 - Decreased iron storage and sideroblasts

37

Differential

- Thalassemia Minor
 - · Normal or increased RBC count
 - Normal RDW
 - Numerous target cells
- Anemia of chronic disease
- Lead poisoning
 - · Course basophilic stippling
 - Numerous ring sideroblasts in BM
 - Blood lead level high (diagnostic)
- Sideroblastic anemia
 - N/N
 - Increased iron storage
 - Increased BM ring sideroblasts (greater than 10%)

39

Diagnostic checklist

- Microcytic/hypochromic
- Decreased serum iron
- · Decreased serum ferritin
- Increased TIBC
- Decreased serum transferrin saturation %
- Increased serum transferrin receptor concentration
- Decreased serum hepcidin

Megaloblastic Anemia

Ineffective hematopoiesis resulting from disorders of DNA synthesis – usually vitamin B12 or folate

41

Etiology: Vitamin B12 or folate deficiency

- Inadequate intake (more common with folate)
 - Populations at risk
 - Elderly
 - Indigent
 - Chronic alcoholics
 - Pregnant women and infants
- Absorption defects (more common with B12)
 - · Deficiencies, antibodies against and intrinsic factor
 - Medications

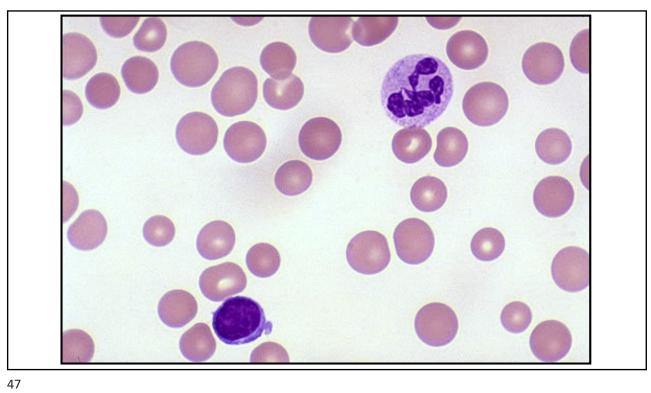
Clinical Presentation

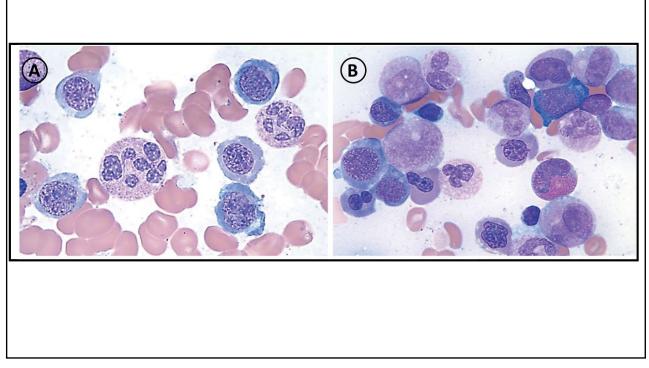
- Anemia, in more severe cases all 3 cell lineages may be decreased (pancytopenia).
- Neurologic impairment
 - More common in vitamin B12
 - Peripheral neuropathy
 - · Subacute combined degeneration of the spinal cord
 - Focal demyelinization of white matter of the brain
- Glossitis
- GI distress
- Weight loss
- · Problems with fertility
- Hypohomocysteinemia (may lead to stroke)

43

Laboratory Testing

- Macrocytic/normochromic (increased MCV normal MCHC)
- Marked anisopoikilocytosis (increased RDW)
- Pancytopenia in severe cases
- Screening tests
 - Serum vitamin B12
 - · Serum folate
 - RBC folate


Additional testing if screening is equivocal


- Methylmalonic acid (MMA)
 - Elevated in vitamin B12 deficiency, not in folate deficiency
 - More specific than serum vitamin B12
- Schillings test (historic)
 - Helpful in diagnosing pernicious anemia
 - Measures absorption of orally administered vitamin B12 +/- intrinsic factor
- Intrinsic factor blocking antibodies
- Parietal cell antibodies

45

Pathology

- Injury type
 - Due to ineffective hematopoiesis with intramedullary cell death rapid cell turnover with frequent mitotic figures
- Cell type
 - Erythroid lineage all lineages affected, especially granulocytes
- PBS
 - Macrocytic anemia
 - · Anisopoikilocytosis (RDW) worsens with severity of deficiency
 - Howell-Jolly bodies, basophilic stippling, or Cabot rings (severe deficiency)
 - Hypersegmented neutrophils (can be earliest sign)
 - Pancytopenia when severe
- BM
 - Hypercellularity of all cell lineages, but erythroid most prominent
 - Megaloblastic changes in multiple lineages
 - No increase in myeloblasts

Differential

- Myelodysplastic syndrome
 - Cytogenetic abnormalities
 - Dysplasia
 - Increased blasts
- Acute erythroid leukemia
- Medications and toxins
- Collagen vascular disease
 - Often see megaloblastoid changes in erythroid nuclei and presents with cytopenias

49

Diagnostic checklist

- Macrocytic anemia with elevated RDW
- Hypersegmented neutrophils
- Trilineage hyperplasia in BM
- Megaloblastic changes
 - Erythroid with fine sieve like chromatin
 - Granulocytes with enlarged nuclei, fine chromatin (giant bands)
 - Nuclear cytoplasmic dissociation (nuclei less mature than cytoplasm)
 - If vitamin deficiency can be demonstrated a bone marrow biopsy is not necessary

Microangiopathic hemolytic anemia

Fragmentation of red blood cells due to narrowing or obstruction of microvasculature

51

Major types of MAHA

- Thrombotic thrombocytopenic purpura (TTP): ADAMTS13 is severly deficient
 - Congenital
 - Aquired
- Hemolytic uremic syndrome (HUS): Damage to endothelial cells; microthrombi formation
- Disseminated intravascular coagulation (DIC): Tissue factor or bacterial toxin activation of coagulation cascade


TTP

- Congenital: rare present at birth
 - Mutations of ADAMTS13
- Acquired: predominant subtype
 - Autoimmune
 - Malignancy
 - Stem cell transplantation
 - Pregnancy
 - Medications
 - Infections (including HIV)

53

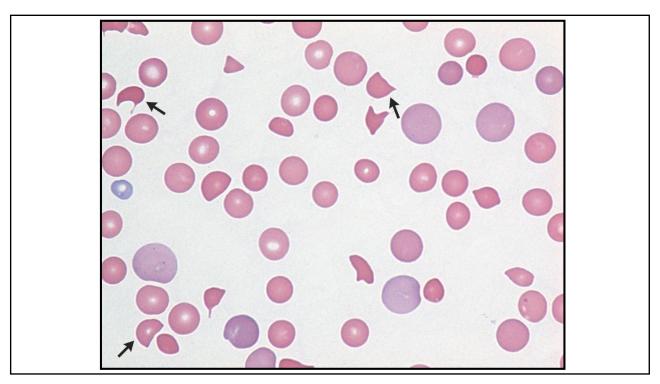
Clinical Presentation

- TTP Triad
 - Thrombocytopenia
 - MAHA
 - Microthrombi of small vessels in multiorgan systems
- Insidious onset
- Fluctuations in neurologic signs in most patients
 - Headaches
 - Bizarre behavior
 - Transient sensorimotor deficits
 - Seizures
 - Coma
- Fever
- Petechiae on lower extremities
- Renal impairment

Laboratory Testing (common in all types of MAHA)

- Marked thrombocytopenia
- RBC fragmentation and anemia
- Significantly elevated serum lactate dehydrogenase (LDH) level
- Increased indirect bilirubin
- Elevated reticulocyte count

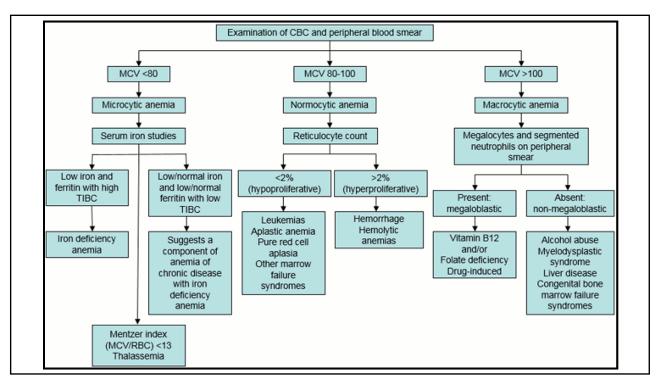
55


Laboratory Testing (specific to TTP)

- Normal prothrombin time (PT)
- Normal activated partial thromboplastin time (aPTT)
- Normal DIC panel
 - Fibrinogen
 - D-dimer
- Creatinine level may be elevated
 - ADAMTS13 activity

Pathology

- PBS
 - Schistocytes (common in all MAHA)
 - Polychromasia, may see nucleated RBCs
 - Thrombocytopenia
 - Leukocytosis
- BM not usually needed


57

Diagnostic checklist

- Thrombocytopenia, anemia and schistocytes
- CLINICOPATHOLOGIC CORRELATION REQUIRED

59

Please send questions to:

Elaina Pirruccello Elaina.Pirruccello@nahealth.com